Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 46: 108903, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36710915

RESUMO

This dataset contains a collection of digitized three-dimensional hardened cement paste microstructures obtained from X-ray micro-computed tomography. Four sets of ordinary Portland cement-based pastes were produced and X-ray screened, varying in the initial water-to-cement ratio (wcr=0.35 and 0.50) and fineness of cement used (391 and 273 m2/kg Blaine). Individual paste samples from each set were screened after 1, 2, 3, 4, 7, 14, and 28 days of elapsed hydration at 20˚C in saturated conditions. Each digitized paste specimen captures a realistic spatial configuration of the principal microstructural phases (anhydrous cement, hydration products, and large capillary porosity). The dataset may be further used for assessing changes in the mix design on the resultant spatial configuration of the paste microstructure or aid the development of microstructure-inspired micromechanical models based on realistic material configuration.

2.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614670

RESUMO

This paper presents an investigation of wooden artworks from the collection of the National Gallery Prague created by Monogrammist IP-one of the top carvers of the Salzburg-Passau region at the beginning of the 16th century. His wood reliefs were examined to gain a better understanding of the historical techniques used in medieval art workshops. The internal structure of the small relief Visitation was analysed using computed tomography. Tomographic reconstruction made it possible to distinguish wood species, observe the internal structure of the artwork in detail, study the technological procedures and identify earlier repairs, additions and damages. Tomographic investigation proved the use of four types of wood on the relief Visitation, most likely pear, lime, unspecified softwood and other different species used for joining dowels. A combination of non-invasive and micro-destructive analytical techniques was employed for the chemical characterisation of the materials in the surface layers of the artworks. Photomicrographs of the surface were taken to provide material for the initial investigation. Non-invasive material research was conducted using a portable X-ray fluorescence analyser and, in selected cases, an external reflection infrared spectrometer. The detailed analyses on the micro-samples was carried out by optical microscopy, micro-Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry and gas chromatography with mass spectrometry. A glaze layer based on protein with earth pigment was identified on the relief Christ the Saviour from Death.

3.
Materials (Basel) ; 14(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885410

RESUMO

Observation of dynamic testing by means of X-ray computed tomography (CT) and in-situ loading devices has proven its importance in material analysis already, yielding detailed 3D information on the internal structure of the object of interest and its changes during the experiment. However, the acquisition of the tomographic projections is, in general, a time-consuming task. The standard method for such experiments is the time-lapse CT, where the loading is suspended for the CT scan. On the other hand, modern X-ray tubes and detectors allow for shorter exposure times with an acceptable image quality. Consequently, the experiment can be designed in a way so that the mechanical test is running continuously, as well as the rotational platform, and the radiographic projections are taken one after another in a fast, free-running mode. Performing this so-called on-the-fly CT, the time for the experiment can be reduced substantially, compared to the time-lapse CT. In this paper, the advanced pore morphology (APM) foam elements were used as the test objects for in-situ X-ray microtomography experiments, during which series of CT scans were acquired, each with the duration of 12 s. The contrast-to-noise ratio and the full-width-half-maximum parameters are used for the quality assessment of the resultant 3D models. A comparison to the 3D models obtained by time-lapse CT is provided.

4.
Materials (Basel) ; 14(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640294

RESUMO

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples. It was found that the highest stiffness of the APM elements is reached before the appearance of the first shear band. After this point, the stiffness of the APM element reduces up to the point of the first self-contact between the internal pore walls, increasing the sample stiffness towards the densification region.

5.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502967

RESUMO

In recent years, researchers working in biomedical science and technology have investigated alternatives for enhancing the mechanical properties of biomedical materials. In this work, sodium alginate (SA) hydrogel-reinforced nanoparticles (NPs) of hydroxyapatite (HA) were prepared to enhance the mechanical properties of this polymer. Compression tests showed an increase of 354.54% in ultimate compressive strength (UCS), and 154.36% in Young's modulus with the addition of these NPs compared with pure SA. Thermogravimetric analysis (TGA) revealed that the amount of residual water is not negligible and covered a range from 20 to 35 wt%, and the decomposition degree of the alginate depends on the hydroxyapatite content, possibly due to the displacement of sodium ions by the hydroxyapatite and not by calcium chloride. Further, there is an important effect possibly due to the existence of an interaction of hydrogen bonds between the hydroxyl of the alginate and the oxygen atoms of the hydroxyapatite, so signals appear upfield in nuclear magnetic resonance (NMR) data. An increase in the accumulation of HA particles was observed with the use of X-ray microtomography, in which the quantified volume of particles per reconstructed volume corresponded accordingly to the increase in the mechanical properties of the hydrogel.

6.
Materials (Basel) ; 14(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799895

RESUMO

Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a µ2µm effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone.

7.
Materials (Basel) ; 13(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244868

RESUMO

Several methods, including X-ray radiography, have been developed for the investigation of the characteristics of water-saturated quasi-brittle materials. Here, the water content is one of the most important factors influencing their strength and fracture properties, in particular, as regards to porous building materials. However, the research concentrated on the three-dimensional fracture propagation characteristics is still significantly limited due to the problems encountered with the instrumentation requirements and the size effect. In this paper, we study the influence of the water content in a natural quasi-brittle material on its mechanical characteristics and fracture development during in-situ four-point bending by employing high-resolution X-ray differential micro-tomography. The cylindrical samples with a chevron notch were loaded using an in-house designed four-point bending loading device with the vertical orientation of the sample. The in-house designed modular micro-CT scanner was used for the visualisation of the specimen's behaviour during the loading experiments. Several tomographic scans were performed throughout the force-displacement diagrams of the samples. The reconstructed 3D images were processed using an in-house developed differential tomography and digital volume correlation algorithms. The apparent reduction in the ultimate strength was observed due to the moisture content. The crack growth process in the water-saturated specimens was identified to be different in comparison with the dry specimens.

8.
Dent Mater ; 33(4): 402-417, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28222906

RESUMO

OBJECTIVE: To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. METHODS: X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. RESULTS: The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50µm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. SIGNIFICANCE: Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake.


Assuntos
Cimentos Dentários , Tomografia Computadorizada por Raios X , Cimento de Fosfato de Zinco , Cimentos Ósseos , Fosfatos de Cálcio , Força Compressiva , Teste de Materiais , Microscopia Eletrônica de Varredura , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...